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Phosphoramidite chemical DNA synthesis technology is utilized for creating de
novo ssDNA building blocks and is widely used by commercial vendors. Recent
advances in enzymatic DNA synthesis (EDS), including engineered enzymes and
reversibly terminated nucleotides, bring EDS technology into competition with
traditional chemical methods. In this short study, we evaluate oligos produced
using a benchtop EDS instrument alongside chemically produced commercial
oligonucleotides to assemble a synthetic gene encoding green fluorescent
protein (GFP). While enzymatic synthesis produced lower concentrations of
individual oligonucleotides, these were available in half the time of
commercially produced oligonucleotides and were sufficient to assemble
functional GFP sequences without producing hazardous organic chemical waste.
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Introduction

Phosphoramidite solid-phase chemical DNA synthesis (CDS) (Beaucage and Caruthers,
1981) is the standard method for producing de novo single-stranded DNA (ssDNA) and is
used on a large scale by commercial vendors to produce oligonucleotides (oligos) for PCR,
cloning, and increasingly for de novo construction of genes and plasmids (Kosuri and
Church, 2014; Song et al., 2021). CDS methods have evolved to maximize product length
while minimizing overall cost and errors, but they are limited to production of oligos of
200 or fewer nucleotides (nt) and require the use of hazardous chemicals such as acetonitrile,
tetrahydrofuran, and dichloromethane (Hughes et al., 2011; Kosuri and Church, 2014; Song
et al., 2021).

Controlled enzymatic DNA synthesis (EDS) was first developed in the 1950s–1970s
(Grunberg-Manago et al., 1955; Bollum, 1962; Chang and Bollum, 1971) with the discovery
of the terminal deoxynucleotidyl transferase (TdT) enzyme that adds dNTPs to the 3′-
hydroxyl group of DNA. Recent breakthroughs have addressed historical limitations of TdT
(Palluk et al., 2018; Song et al., 2021) by evolving more thermally stable TdT enzymes (Chua
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et al., 2020; Lu et al., 2022), developing reversible 3′-dNTP
protecting groups that can be accommodated by TdT (Mathews
et al., 2016; Mathews et al., 2017; Hoff et al., 2020), and improving
enzymatic coupling efficiency to enable a cyclic, solid-phase-
templated extension of DNA (Palluk et al., 2018; Barthel et al.,
2020; Hoff et al., 2020). EDS has the added benefit of eliminating the
use of hazardous organic chemicals by utilizing a primarily aqueous
workflow (Song et al., 2021).

Several EDS-focused companies were launched within the last
decade, including Molecular Assemblies and Nuclera (2013), DNA
Script (2014), Camena Bioscience (2016), Ansa Biotechnologies
(2018), and Kern Systems (2019) (Eisenstein, 2020). Camena
Bioscience and DNA Script report greater than 99% coupling
efficiency while producing 300- and 280-mer oligos, respectively
(Eisenstein, 2020), elevating this technology to a competitive level
with chemical synthesis (Masaki et al., 2022). More recently, Ansa
Biotechnologies, Inc., reported the enzymatic synthesis of the
longest de novo oligonucleotide ever produced in a single
synthesis at 1,005 nucleotides long (Ansa Biotechnologies, 2023),
and Camena Bioscience reported the production of a whole 2.7-kb
plasmid using multi-enzymatic de novo DNA synthesis and gene
assembly (Camenabio, 2020). However, EDS products are not
readily available yet for purchase from commercial sources, and
interested users are limited to early access programs (Ansa and
Molecular Assemblies) or purchasing a benchtop EDS instrument
(DNA Script).

The Syntax-100™ from DNA Script is the first commercially
available benchtop EDS instrument. It is marketed to have a user-
friendly platform and essentially aqueous waste stream and can
synthesize 96 × 60 mers in 13 hours, including cleanup and
quantitation. Here, we evaluate the Syntax-100™ to produce oligos
using EDS and compare them to commercial CDS oligos to assemble a
synthetic gene encoding green fluorescent protein (GFP). In this brief
study, we consider the time of oligo synthesis and gene assembly, cost
per oligo/base, sequence accuracy, and waste production.

Materials and methods

Oligo design and production

Primerize (Tian and Das, 2017) was used to design overlapping
oligos for a GFP-coding sequence (Snapgene, 2023) with 20 nt
overlap, 60 or 90 nt maximum length, and a minimum annealing
temperature of 60°C. A set of twelve (90 nt, 100 nmol) or twenty
(60 nt, 25 nmol) commercial CDS oligos was purchased from
Integrated DNA Technologies (IDT, USA). Each set of CDS
oligos was used for independent assembly experiments. The
Syntax-100™ enzymatic DNA synthesizer was set up according
to the user instructions, with reagents and consumables provided
for a 60-mer kit. A set of twenty oligos (60 nt max) and Gibson
assembly primers were synthesized in two or more replicates per
plate on the Syntax-100™ at 0.3 nmol per oligo, normalized to a final
concentration of 5 μM. After completion of each run (13 hours), the
oligos were immediately stored at −20°C. Two individual plates of
EDS oligos were produced and used for separate assembly
experiments. Supplementary Table S1 lists all oligos used in this
study.

Gene assembly

Method modified from Dormitzer et al. (2013). A set of twelve
(90 nt) CDS oligos, twenty (60 nt) CDS oligos, or twenty (60 nt) EDS
oligos was pooled by combining 2 µL of each 5 µM oligo. A volume
of 10 μL of ×2 Gibson Assembly Master Mix (New England
Biosciences, #E2611) was combined with 10 µL of pooled oligos
and incubated at 50°C/30 min. Next, 5 µL of this mixture was added
to 12.5 µL of ×2 Q5 Master Mix (NEB, # M0492S), 2.5 µL each end
oligo, and H2O to reach a final concentration of 25 µL. The PCR
cycles were run as follows: 98°C/60 s, 98°C/10 s, 60°C/30 s, and 72°C/
1.5 min, return to step 2 for 24 cycles, followed by 72°C/5 min and
10°C hold. An enrichment PCR using 2 µL of PCR1 and 2.5 µL of
5 µM end oligos was performed under the aforementioned
conditions to obtain a full-length gfp product.

TOPO cloning, transformation, colony
screening, and sequencing

Following gel confirmation of the assembled gene product, 1 µL of
Taq polymerase (NEB, #M0273S) was added to PCR to add a single
deoxyadenosine (A) to the 3′-ends. TOPO cloning and
transformation were performed using a TOPO® TA Cloning® Kit
(Invitrogen #K457540) (Thermo Fisher Scientific, 2023).
Transformants were screened by PCR, and plasmids were isolated
via a Miniprep Kit (Zymo, #D4211) and were sequenced (Eurofins).

Gibson assembly and GFP expression/
fluorescence analysis

Confirmed, correct gfp sequences from each assembly were cloned
into an expression vector using Gibson assembly primers
(Supplementary Table S1). Separate PCRs were run with 2 μL of
the template (pET28a (+) or PCR4_GFP), 25 μL of ×2Q5MasterMix,
2.5 μL of each 5 μM forward or reverse primer, and H2O to 50 μL
using the online Q5 PCR protocol (New England Biolabs, 2023).
Vector and insert sequences were gel-extracted and cloned in aGibson
assembly reaction according to the online protocol (New England
Biolabs, 2023) and transformed into NEB5α competent cells (NEB,
#C2987). Sequence-confirmed plasmids were transformed into
BL21 DE3 competent cells (Thermo Fisher Scientific, #EC0114)
and plated on LB/kanamycin plates. Cells transformed with
pET28-GFP from each assembly were sub-cultured onto fresh LB/
kanamycin plates with or without the addition of 10 mM isopropyl β-
d-1-thiogalactopyranoside (IPTG), incubated overnight at 37°C, and
imaged under UV light to confirm the expression of fluorescent GFP.

Results and discussion

In this study, we sought to compare CDS- and EDS-sourced
oligonucleotides for use in the assembly of the gene encoding GFP.
We used the application Primerize (Tian and Das, 2017) to divide a
GFP coding sequence (Snapgene, 2023) into overlapping oligos of
60 nt or 90 nt maximum length, a 20 nt overlap, and a minimum
annealing temperature of 60°C that were amenable to assembly using
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previously established polymerase cycling assembly (PCA) methods
(Supplementary Table S1) (Stemmer et al., 1995; Dormitzer et al.,
2013). The 60 nt oligos provided the maximum length available
from our EDS benchtop instrument, and the 90 nt oligos provided a
longer yet cost-effective option for CDS oligos that could be used to
compare the effects of oligo length on gene assembly. We
synthesized replicates of twenty 60 nt oligos via EDS in two
independent runs on the Syntax-100™. The total run time for
each plate was thirteen hours, including sample cleanup and
quantitation. A set of twenty (60 nt max, 25 nmol each) and
twelve (90 nt max, 100 nmol each) commercial CDS oligos was
ordered and delivered in 2 days.

Our adapted gene assembly approach (Dormitzer et al., 2013)
included an initial isothermal assembly of pooled oligos, followed by
two rounds of PCR: PCR1 for PCA and PCR2 to enrich the final
product (Figure 1A). The CDS 90 and 60 nt oligo assemblies showed
a faint band at the expected size (717 bp) after PCR1 and a clear band
after PCR2, whereas the two EDS 60 nt oligo sets did not produce a
visible full-length product until PCR2 (Figure 1B). Full gene
products assembled from each oligo set were TOPO-cloned into
pCR4 vectors (Thermo Fisher Scientific, 2023) and sequenced after
transformation and colony screening. A minimum of ten
transformants were screened and sequenced for each independent
assembly (Table 1). We observed that the designed gfp sequence was

FIGURE 1
(A)Workflow for oligo design, gene assembly, cloning, sequence verification, and sub-cloning of synthetic gfp sequences, created with BioRender.
com. (B) Pooled EDS (60 nt) and CDS (90 nt or 60 nt) oligos were assembled into gfp using an isothermal incubation step, followed by PCR1 for
polymerase cycling assembly and PCR2 to enrich the final product (717 bp). (C) Sequence-verified GFP-encoding sequences assembled from each oligo
set were cloned into a pET28 vector and transformed into BL21 DE3 E. coli that were grown on LB/kanamycin plates in the presence or absence of
10 mM IPTG; plates were imaged under UV light to demonstrate GFP expression in induced samples (right) compared to uninduced samples (left). (D)
Analysis of waste stream for a benchtop EDS instrument (Syntax-100™) and CDS instrument (MerMade 192e) with the hazardous nature of waste
indicated by color (non-hazardous = blue; hazardous = orange). Note: components and volumes are from production of one set of 96 × 60-mers per
instrument.
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successfully assembled using each of the four oligo sets (Table 1).
Notably, the longer 90 nt CDS oligos did produce a higher
percentage of correct sequences (40%) compared to the 60 nt
oligo sets (27%, CDS and 24%, EDS). Sequence-validated gfp
gene products from each oligo set were sub-cloned into an
expression vector, transformed into competent E. coli cells, and
analyzed for GFP protein expression and fluorescence. EDS- and
CDS-sourced DNA sequences successfully produced functional gene
products with confirmed expression and fluorescence of GFP
(Figure 1C).

While this work was being completed, the vendor for the Syntax-
100™ published an application note on their website detailing a
similar set of experiments (DNA Script, 2022).We have summarized

those findings in Table 1 along with our independent validation of
EDS oligos compared to commercially prepared CDS oligos. Using
an analogous gene assembly method, we obtained similar
percentages of correctly assembled sequences using EDS oligos
(23%) compared to the vendor (24%). However, our results for
CDS 60 nt oligos differed, with 27% of our sequenced transformants
having the designed sequence compared to only 18% reported by the
vendor. The vendor does not state the source of their CDS oligos.

Currently, the most cost-effective way to utilize the Syntax-100™ is
to produce 96 × 60-mers (or 80-mers and 120-mers that have recently
become available), which is comparable to ordering the equivalent
number, length, and quality of oligos from IDT (Table 2) at
approximately $0.20–$0.40 per base, if labor and the initial cost of

TABLE 1 Summary of gene assembly and sequence results from enzymatically or chemically synthesized oligos (EDS or CDS) and comparison with published
results from the vendor.

Gene assembly and sequencing results Vendor results (DNAScript, 2022)

Oligo source EDS CDS CDS EDS CDS

Protein coding ORF GFP GFP GFP eGFP eGFP

Oligo length (nt) 51–60 51–60 47–90 59–60 59–60

Overlap (nt) 20 20 20 nd nd

Polymerase Q5 Q5 Q5 Q5 Q5

Assembly method One-step PCA One-step PCA One-step PCA Two-step PCA Two-step PCA

Error correction No No No Yes Yes

Set of oligos produced 2 1 1 4 4

Independent assemblies 2 1 1 5 5

Transformants screened 44 17 15 480 480

Total sequenced 30 (70%) 15 (88%) 10 (67%) ~384 (80%) ~384 (80%)

# Correct sequences 7 4 4 nd nd

% correct sequences 23% 27% 40% 24% 18%

1-bp SNPs or INDELS 13 4 2 nd nd

Multiple SNPs or INDELS 10 7 4 nd nd

Bolded values are for emphasis of oligo length and associated percentage of correctly assembled sequences.

TABLE 2 Analysis of cost, time, and accuracy of GFP sequences assembled from oligos produced via enzymatic (EDS) or chemical (CDS) DNA synthesis.

Oligo source CDS EDS

Synthesis/delivery time 2 days 13 hours

Oligo # produced 12 24 96 12 24 96 96 96

Oligo yield (nmol) 100 25 25 0.3 0.3 0.3 0.3 0.3

Oligo length (max, nt) 90 60 60 60 60 60 80 120

Cost/kit or order $772 $540 $2,159 $2,470 $2,470 $2,470 $1,600 $2,550

Avg. cost per oligo $64 $22 $22 $206 $103 $26 $16 $27

Avg. cost per base $0.71 $0.37 $0.37 $3.43 $1.72 $0.43 $0.20 $0.22

Assembly time 1–2 days 1–2 days 1–2 days

% perfect sequences 40% (n = 10) 27% (n = 15) 23% (n = 30)
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the instrument are not included. The yield for EDS oligos is much lower
(0.3 nmol per oligo per well), but in our experiments, EDS oligoswere of
sufficient quality and quantity to assemble a functional gfp gene. It is
worth noting that purchasing a CDS synthetic gfp gene from
commercial sources currently costs approximately $280, which is
still substantially cheaper than purchasing or producing the
assembly oligos by EDS or CDS methods. Finally, we were
interested in analyzing the waste generated in our laboratory on a
benchtopCDS instrument (MerMade 192E™, LGC Limited) compared
to the Syntax-100™ after production of 96 × 60-mers. Our analysis
indicated a clear reduction in hazardous chemical waste production in
both volume and individual waste components when using the
benchtop EDS method (Figure 1D).

This brief study provides an independent validation that EDS
oligonucleotides are suitable for use in gene synthesis workflows,
with 23% of assembled samples containing the designed gfp
sequence (Table 1). Our findings are similar to those described by
the vendor in their recently published application note (DNA Script,
2022). Notably, we obtained similar results without adding a correction
step in our PCA protocol. Our results for CDS gene assembly indicate a
higher rate of correct sequences assembled (40% and 27% compared to
23% for EDS oligos) that may be due to longer starting oligo length (in
the case of CDS 90 nt oligos) or the higher reported error rate for EDS
(0.4%) versusCDS (0.1%) (Masaki et al., 2022). Further experiments are
required to differentiate between errors introduced during DNA
synthesis or gene assembly. Both EDS- and CDS-produced oligos
used in gene assembly resulted in functional GFP-coding sequences.

Although commercial CDS sources remain the most cost-effective
solution for obtaining oligos, it is worth noting that benchtop DNA
synthesis instruments (CDS and EDS) provide users with improved
access to on-demand DNA synthesis in mobile or austere laboratory
settings. In our studies, EDS produced substantially less hazardous
waste than a CDS instrument, suggesting this technology could provide
a safer and more environmentally friendly alternative for large-scale
DNA synthesis. Finally, the recent report of kilobase-length DNA by
EDS methods (Ansa Biotechnologies, 2023) suggests that this
technology may overcome the inherent length limitations faced by
CDS methods. Future studies may include testing additional EDS kits,
offering oligomodifications such as the addition of biotin, fluorophores,
and quenchers for a variety of downstream applications.
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